Extensions 1→N→G→Q→1 with N=C23 and Q=C2xC6

Direct product G=NxQ with N=C23 and Q=C2xC6
dρLabelID
C24xC696C2^4xC696,231

Semidirect products G=N:Q with N=C23 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C23:1(C2xC6) = C3xC22wrC2φ: C2xC6/C3C22 ⊆ Aut C2324C2^3:1(C2xC6)96,167
C23:2(C2xC6) = C3x2+ 1+4φ: C2xC6/C3C22 ⊆ Aut C23244C2^3:2(C2xC6)96,224
C23:3(C2xC6) = C23xA4φ: C2xC6/C22C3 ⊆ Aut C2324C2^3:3(C2xC6)96,228
C23:4(C2xC6) = D4xC2xC6φ: C2xC6/C6C2 ⊆ Aut C2348C2^3:4(C2xC6)96,221

Non-split extensions G=N.Q with N=C23 and Q=C2xC6
extensionφ:Q→Aut NdρLabelID
C23.1(C2xC6) = C3xC23:C4φ: C2xC6/C3C22 ⊆ Aut C23244C2^3.1(C2xC6)96,49
C23.2(C2xC6) = C3xC4.4D4φ: C2xC6/C3C22 ⊆ Aut C2348C2^3.2(C2xC6)96,171
C23.3(C2xC6) = C3xC42:2C2φ: C2xC6/C3C22 ⊆ Aut C2348C2^3.3(C2xC6)96,173
C23.4(C2xC6) = C3xC4:1D4φ: C2xC6/C3C22 ⊆ Aut C2348C2^3.4(C2xC6)96,174
C23.5(C2xC6) = C2xC4xA4φ: C2xC6/C22C3 ⊆ Aut C2324C2^3.5(C2xC6)96,196
C23.6(C2xC6) = D4xA4φ: C2xC6/C22C3 ⊆ Aut C23126+C2^3.6(C2xC6)96,197
C23.7(C2xC6) = Q8xA4φ: C2xC6/C22C3 ⊆ Aut C23246-C2^3.7(C2xC6)96,199
C23.8(C2xC6) = C6xC22:C4φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.8(C2xC6)96,162
C23.9(C2xC6) = C3xC42:C2φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.9(C2xC6)96,164
C23.10(C2xC6) = D4xC12φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.10(C2xC6)96,165
C23.11(C2xC6) = C3xC4:D4φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.11(C2xC6)96,168
C23.12(C2xC6) = C3xC22:Q8φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.12(C2xC6)96,169
C23.13(C2xC6) = C3xC22.D4φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.13(C2xC6)96,170
C23.14(C2xC6) = C6xC4oD4φ: C2xC6/C6C2 ⊆ Aut C2348C2^3.14(C2xC6)96,223
C23.15(C2xC6) = C3xC2.C42central extension (φ=1)96C2^3.15(C2xC6)96,45
C23.16(C2xC6) = C6xC4:C4central extension (φ=1)96C2^3.16(C2xC6)96,163
C23.17(C2xC6) = Q8xC2xC6central extension (φ=1)96C2^3.17(C2xC6)96,222

׿
x
:
Z
F
o
wr
Q
<